

PROFORMS MARKING AND

PROForms[®] Structural Shapes

PROForms'

WE'VE BUILT OUR REPUTATION FOR SERVICE AND RELIABILITY BY HELPING CUSTOMERS SOLVE THEIR TOUGHEST CHALLENGES. Our

PROForms[®] FRP products are made in the USA under controlled qualityassurance conditions. We'll never put our customers at the risk of longer lead times, improper specs, and far-away product support like foreign producers do. When you work with us, you can expect quality products at a fair price without restrictive policies, hidden conditions or hassles.

PROForms

From different colors and specific tolerances to unusual reinforcement needs and custom FRP structural shapes, our decades of experience meeting specific requirements on custom orders means you'll get exactly what you need. Volume discounts and annual contracts are also available, so contact us for a quote.

Quality and Testing

Need to know a specific product will perform as you require? We have detailed technical data, application history and experience to help ensure you get the right structural fiberglass and composite grating products for your application. We also have a testing facility to confirm the product performs to your required specs.

NATIONWIDE LOGISTICS AND WAREHOUSING

PROForms

We have distribution locations across the U.S. to expedite delivery and can stagger shipments to fit your installation schedule.

FABRICATION & ASSEMBLY

We have a state-of-the-art fabrication facility with CNC machines for faster processing, as well as secondary coating and painting services. Kitted shipments are available to save installation time on site.

DESIGN AND ENGINEERING SERVICES

Our full-service team can assist with design, engineering, drafting and estimating to maximize the advantages of FRP in your project.

THE SMART ALTERNATIVE TO WOOD, STEEL AND ALUMINUM

Fiberglass reinforced polymer (FRP) is one of the strongest, most durable building materials available today. It's nonconductive, dimensionally stable and extremely low maintenance. It offers the strength of steel at a fraction of the weight for efficient transportation and installation. And unlike traditional materials like wood, steel and aluminum, FRP won't rust, corrode, warp, rot, decay or attract insect damage — so it's ideal for harsh environments.

In short, it's a different way to solve your design challenges — one that can reduce costs and improve long-term performance. To maximize these benefits, however, it's best to design with the properties of FRP in mind from the start. Our engineers and fabricators can help, so contact us with your questions.

Features and Benefits

- Corrosion resistant. Won't rot, rust or corrode.
- Strong yet lightweight. Helps save on transportation.
- Virtually maintenance-free. Durable and weather-resistant for a longer life cycle.
- Fire-retardant and nonconductive. Helps create a safer environment.
- Dimensionally stable. Won't shrink, swell, warp or bow.
- **Highly consistent.** Strength, appearance and quality are the same from piece to piece.

- **Easy to fabricate and install.** FRP can be cut, drilled and assembled with standard tools.
- Non-leaching. Does not require environmentally hazardous preservatives.
- **Fast turnaround.** Most in-stock orders are shipped within the next business day.
- Made in U.S.A.

APPLICATIONS

Stair Structures Walkways Pedestrian Bridges Structural Framing Handrail Systems Caged and Fixed Ladders Decking Boat Docks Pipe Supports Cross Bracing Concrete Embedment Tank and Hatch Covers Display Racks

MARKETS

Architectural Solutions Agriculture Cooling Towers Military Mining Oil and Gas Pedestrian Bridges Plant and Chemical Processing Pulp and Paper Theme and Water Parks Utilities Wastewater/Water Treatment

FRP vs. Traditional Materials

Traditional building materials have their place. But for harsh, corrosive environments, FRP is a smart choice. Here's how FRP compares to several traditional options.

	FRP Composites Pultruded GFRP	Steel A 709 Grade 50	Aluminum 6061-T651 & 6061-T6	Wood Douglas Fir
CORROSION, ROT AND INSECT RESISTANCE	Resists a broad range of chemicals and is unaffected by moisture or immersion in water. Resists insect damage. Painting is only suggested when exposed to UV rays/direct sunlight.	Subject to oxidation and corrosion. Requires painting or galvanizing for many applications.	Can cause galvanic corrosion. (Anodizing and other coatings increase corrosion resistance.)	Can warp, rot and decay when exposed to moisture, water and chemicals. Susceptible to attack by insects such as termites and marine borers.
STRENGTH	Has greater flexural strength than timber and pound-for-pound is often stronger than steel and aluminum in the lengthwise direction. Ultimate flexural strength (Fu): LW = 30,000 psi (30 ksi) CW = 10,000 psi (10 ksi) Compression strength: LW = 30,000 psi (30 ksi) CW = 15,000 psi (10 ksi)	Homogeneous material. Yield strength (Fy) = 36 ksi	Homogeneous material. Flexural strength (Fº) = 35 ksi	Modulus of rupture is 12,000 psi
WEIGHT	Weighs 75% less than steel and 30% less than aluminum.	Could require lifting equipment to move and place. 1/2-in. thick plate = 20.4 lbs/sq ft	Lightweight — about a third of the weight of copper or steel.	Specific gravity 0.48
ELECTRICAL Conductivity	Nonconductive. High dielectric capability.	Conducts electricity. Grounding potential.	Conducts electricity. Grounding potential.	Can be conductive when wet.
THERMAL PROPERTIES	Good insulator with low thermal conductivity. Thermal conductivity = 4 (BTU in. /(hr ft ² °F) Low thermal coefficient of expansion. = 7 - 8 (in./in./°F) 10 ⁻⁶	Conducts heat. Thermal conductivity = 260-460 (BTU/sf/ hr/°F/in.) Thermal coefficient of expansion. = 6 - 8 (in./in./°F) 10 ⁻⁶	Conducts heat. Thermal conductivity = 150 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 13 (in./in./°F) 10 ⁻⁶	Low thermal conductivity. Thermal conductivity = .8 (BTU/sf/hr/°F/in.) Thermal coefficient of expansion. = 1.7 - 2.5 (in./in./°F) 10 ⁻⁶
STIFFNESS	Up to 3.3 times as rigid as timber. Will not permanently deform under working load. Modulus of elasticity: 2.8 x 10 ⁶ psi	Modulus of elasticity: 29 x 10 ⁶ psi	Modulus of elasticity: 10 x 10 ⁶ psi	Modulus of elasticity: up to 1.6-1.8 x 10 ⁶ psi*

	FRP Composites Pultruded GFRP	Steel A 709 Grade 50	Aluminum 6061-T651 & 6061-T6	Wood Douglas Fir
IMPACT RESISTANCE	Will not permanently deform under impact. Glass mat in pultruded parts distributes impact load to prevent surface damage, even in subzero temperatures.	Can permanently deform under impact.	Easily deforms under impact.	Can permanently deform or break under impact.
ENVIRONMENTAL Impact	Not hazardous to the environment.	Not hazardous.	Not hazardous.	May be treated with hazardous preservatives or coatings to increase corrosion/rot/insect resistance. Contributes to depletion of forest systems.
COLOR	Color is molded through; no painting required. Variety of colors available.	Must be painted for color, and may require repainting over time.	Colors require prefinishes, anodic coatings and paints. Mechanical, chemical and electroplated finishes can be applied.	Must be primed and painted for color, and may require repainting over time.
COST	Lower installation costs, less maintenance and longer product life allow for a lower lifecycle cost.	Lower initial material cost.	Part price comparable to FRP.	Has a lower initial cost, but usually requires more maintenance and replacement.
EMI/RFI TRANSPARENCY	Transparent to radio waves and EMI/ RFI transmissions. Used for radar and antennae enclosures and supports.	Can interfere with EMI/RFI transmissions.	Highly reflective to EMI/RFI transmissions.	Transparent.
FABRICATION	Can be field-fabricated using simple carpenter's tools with carbon or diamond tip blades — no torches or welding required. Light weight allows easier transport and installation.	Often requires welding and cutting torches. Heavier material requires special equipment to erect and install.	Good machinability (welding, brazing, soldering or mechanical joining).	Can be field-fabricated using simple carpenter's tools.

*12% moisture content

Compare the Numbers ...

Properties	FRP Con Pultrude	nposites ed GFRP	Steel A 709 Grade 50	Aluminum 6061-7651 & 6061-76	Wood Douglas Fir
Density (lb/ft ³)	107-	-120	490	169	30
Tensile Strength (psi)	30,000 (LW)	7,000 (CW)	65,000	45,000	_
Tensile Modulus (x 10 ⁶ psi)	2.8 (LW)	1 (CW)	30	10	_
Flexural Strength (psi)	30,000 (LW)	10,000 (CW)	65,000	45,000	12,000
Flexural Modulus (x 10 ⁶ psi)	1.8 (LW)	0.8 (CW)	30	10	1.6 - 1.8
Thermal Conductivity (BTU in. /(hr ft 2 °F))	4	1	323	1,160	0.8
Thermal Expansion (x 10 ⁻⁶ in./in./°F)	7 to 8		6 to 8	13	1.7 to 2.5

LW = Lengthwise / CW = Crosswise

References: 1. Datasheets from www.matweb.com 2. Wood Handbook: Wood as an Engineering Material

PROForms[®] Availability

LBS./LIN. FT.

0.34

0.39

0.74

0.53

0.97

0.58

1.09

0.71

1.35

0.86

1.67

1.76

1.09

2.11

2.99

2.60

3.80

2.96

4.32 4.35

6.54

SQUARE TUBE

SIZE IN INCHES

1¼ x 1¼ x 1/₄

1¼ x 1¼ x ¼

 $1\frac{1}{2}$ x 1 $\frac{1}{2}$ x $\frac{1}{8}$

1½ x 1½ x ¼

1¾ x 1¾ x 1%

1¾ x 1¾ x ¼

 $2\frac{1}{4} \times 2\frac{1}{4} \times \frac{1}{8}$

 $2\frac{1}{4} \times 2\frac{1}{4} \times \frac{1}{4}$

 $2\frac{1}{2} \times 2\frac{1}{2} \times \frac{1}{4}$

3 x 3 x ½

3 x 3 x ¹⁄₄

3 x 3 x ¾

 $3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{4}$

3½ x 3½ x ¾

4 x 4 x ¹/₄

4 x 4 x 3/8

6 x 6 x ¼ 6 x 6 x ¾

2 x 2 x ¹/₈

2 x 2 x ¹/₄

1 x 1 x ½

FLAT SHEET	
SIZE IN INCHES	LBS./LIN. FT.
³ / ₁₆ x 2 ¹ / ₂	0.37
¼ x 3	0.57
¾ x 3	0.93
½ x 3	1.03
⅓ x 4	0.39
¼ x 4	0.76
¾ x 4	1.15
½ x 4	1.53
¼ x 6	1.24
½ x 6	2.25
¼ x 9	1.86
¼ x 10	1.90
¼ x 11	2.26
¼ x 12	2.46
¼ x 24	4.87
¼ x 36	7.49
SIZE IN INCHES	LBS./SQ. FT.
⅓ x 48	1.30
¾₁ ₆ x 48	1.88
¼ x 48	2.49
¾ x 48	3.51
½ x 48	4.87
5∕8 x 48	5.86
¾ x 48	6.72
1 x 48	8.65

ROUND TUBE

SIZE IN INCHES	LBS./LIN. FT.
1 x .100	0.25
1 x 1/8	0.28
1½ x 1/8	0.38
1½ x ¼	0.79
1¾ x 1/8	0.53
1¾ x ¼	0.97
2 x 1/8	0.57
2 x ¼	1.03
3 x .100	0.70
3 x ¼	1.72
3 x ½	3.13
4.89 x ¹ / ₈	1.81
4.89 x ³ / ₁₆	2.13

I-BEAM

SIZE IN INCHES	LBS./LIN. FT.
3½ x 1½ x ¾	0.97
4 x 2 x ¼	1.56
5½ x 2½ x ¼	1.58
6 x 3 x ¼	2.34
6 x 3 x ¾	3.65
8 x 4 x ³ / ₈	4.42
8 x 4 x ½	5.70
10 x 5 x ½	7.39
12 x 6 x ½	8.91
18 x $\frac{3}{8}$ x $4\frac{1}{2}$ x $\frac{1}{2}$	8.51
24 x 3 x 7 1 x 3 4	15.49

WIDE FLANGE (WF) BEAM

MIDE I BANGE (
SIZE IN INCHES	LBS./LIN. FT.
4 x 4 x ¼	2.33
6 x 6 x ¼	3.49
6 x 6 x ¾	5.29
8 x 8 x ¾	6.92
8 x 8 x ¹ / ₂	8.85
10 x 10 x $\frac{1}{2}$	11.08
12 x 12 x ¹ / ₂	13.43

ROUND ROD

SIZE IN INCHES	LBS./LIN. FT.
1∕8	0.01
3∕16	0.02
1/4	0.04
5/16	0.07
3/8	0.10
1/2	0.16
5/8	0.27
3/4	0.38
7/8	0.52
1	0.68
11/4	1.07
11/2	1.53
2	2.56

CHECK WEBSITE FOR AVAILABILE INVENTORY Most in-stock orders are shipped within the next business day.

SLUDGE FLIGHTS SIZE IN INCHES LBS./LIN. FT. 3 x 6 x ¹/₈ x ³/₁₆ (Channel) 1.37 3 x 8 x ¹/₈ x ³/₁₆ (Channel) 1.50 6 x ¹/₈ x 3 x ¹/₄ (Angle) 1.28 8 x ¹/₈ x 3 x ¹/₄ (Angle) 1.66

EMBEDMENT ANGLE SIZE IN INCHES LBS./LIN. FT. 1 x 1½ x ¼ 0.95 1½ x 1½ x ¼ 1.06 2 x 1½ x ¼ 1.15

DECK BOARD SIZE IN INCHES LBS./LIN. FT. 12 x 2¹/₈ x ³/₁₆ 2.97 $24 \text{ x } 1\frac{1}{8} \text{ x}$ various thickness 4.61 24 x 1¹/₂ x .175 5.96

BUILDING PANEL - 12"/24" SIZE IN INCHES LBS./LIN. FT. 12 x 1²⁵/₃₂ x ³/₃₂ 2.67 24 x 2¹/₂ x ¹/₄ 13.31

DOOR FRAME SIZE IN INCHES LBS./LIN. FT. 5³⁄₄ x 2⁵⁄₈ x ³⁄₁₆ 1.68

CORNER COLUMN SIZE IN INCHES LBS./LIN. FT. 7³/₄ x 7³/₄ x ³/₈ 8.81

BOX BEAM - 16" SIZE IN INCHES LBS./LIN. FT. 16 x 4 x ¾ 11.41 $16 \text{ x} 4 \text{ x} \frac{1}{4}$ 9.00

CENTER COLUMN SIZE IN INCHES LBS./LIN. FT. 7¾ x 10¾ x ¾ 10.68

THRESHOLD SIZE IN INCHES LBS./LIN. FT. 5½ x ¼ 1.07

SIZE IN INCHES	LBS./LIN. FT.
1 x 1	0.81
1¼ x 1¼	1.13
1½ x 1½	1.87
2 x 2	3.32

LADDER RUNG	
SIZE IN INCHES	LBS./LIN. FT.
1¼ x .160	0.50

SIZE IN INCHES	LBS./PIECE
4¼ x 1¼ Fixed	0.87
41/2 x 11/2 Fixed	1.32
4¼ x 1¼ Adjustable	0.87
4 ¹ / ₂ x 1 ¹ / ₂ Adjustable	1.32

THREADED ROD & HEX NUTS

SIZE IN INCHES	LBS./LIN. FT.
Rod 3/8 - 16 UNC	0.10
Rod – $\frac{1}{2}$ -13 UNC	0.15
Rod - 18-11 UNC	0.24
Rod - 3/4-10 UNC	0.34
Rod – 1-8 UNC	0.52
Hex Nut - 3%-16 UNC	0.02
Hex Nut – $\frac{1}{2}$ -13 UNC	0.02
Hex Nut – $\%$ -11 UNC	0.04
Hex Nut - ³ / ₄ -10 UNC	0.07
Hex Nut – 1-8 LINC	0.13

TOE PLATE	
SIZE IN INCHES	LBS./LIN. FT.
4 x ⁵ / ₈ x ¹ / ₈	0.49

RECTANGULAR TUBE

SIZE IN INCHES	LBS./LIN. FT.
4 x ¹ / ₈ x 1 x ¹ / ₈	1.49
4 x 1/ ₈ x 2 x 1/ ₄	1.49
4 x ¼ x 2 x ¼	1.58
$5\frac{1}{2} \times \frac{1}{4} \times 3\frac{1}{2} \times \frac{1}{4}$	3.09
6 x ¼ x 4 x ¼	3.77
6½ x ¼ x 2 x ½	3.56

SIZE IN INCHES	LBS./LIN. FT.
1 x 1/8	0.11
1¼ x ¾	0.19
1¾ x ¼	0.39
2 x ½	0.85

Threaded rod available in 48" & 96" lengths.

The Pultrusion Process: Step by Step

FRP is also known as "composites," and is a combination of:

REINFORCEMENTS such as fiberglass roving and mat;

RESIN such as polyester or vinylester;

ADDITIVES such as pigments, UV inhibitors, fire retardant, etc.; and

SURFACE VEIL which enhances corrosion resistance, UV protection and appearance

Reinforcement

The process typically starts by pulling in two forms of fiberglass reinforcement. Creels of fiberglass roving provide unidirectional strength along the length of the profile, and rolls of woven fiberglass mat provide multidirectional reinforcement. All reinforcements are fed through pre-forming guides that will begin to shape the raw glass fibers into the finished profile.

Surface Veil Surface veil can be added to the final product to enhance surface appearance, while providing corrosion resistance and UV protection.

Wet-Out The fiberglass reinforcements are pulled through a bath of thermoset resin – typically polyester or vinylester – as well as pigments to add color, filler to enhance properties, and a catalyst to aid in curing. Resin also provides an additional form of reinforcement.

Curing Wet-out reinforcements are pulled through the heated pultrusion die, which begins the thermosetting process that causes the resin to "cure" or harden. By the time the part exits the die, a solid, rigid profile in the exact shape of the die cavity has been formed with all the reinforcements laminated inside.

Standard Resin Systems

PROForms[®] products are offered in three resin series to meet the requirements of different applications and environments.

STD — STANDARD NON FIRE RETARDANT POLYESTER

A general-purpose isophthalic polyester resin system with a UV inhibitor, offering good corrosion resistance. Color: Olive Green

FR — FIRE RETARDANT POLYESTER

A general-purpose fire-retardant isophthalic resin system with a UV inhibitor, offering good corrosion resistance. Colors: Dark Gray and Yellow

VE -- VINYLESTER FIRE RETARDANT

A premium vinylester resin system with a UV inhibitor. It's fire retardant and highly corrosion resistant. Colors: Beige and Yellow

Typical Coupon Properties

The following table shows test results for typical coupon properties of PROForms[®] structural fiberglass profiles (Standard, Fire Retardant and Vinylester shapes). Properties are derived per the ASTM test method shown. Synthetic surfacing veil and ultraviolet inhibitors are standard.

	ASTM Test		Polyester	Vinylester PROForms	Rod & Bar PROForms	Polyester Flat Sheet			Vinylester Flat Sheet		
	Method	Units	PROForms			1/8"	3/16" - 1/4"	3/8" - 1"	1/8"	3/16" - 1/4"	3/8" - 1"
MECHANICAL PROPERT	IES (minimum ult	timate)									
Tensile Stress, LW D	D 000	psi	30,000	30,000	100,000	20,000	20,000	20,000	20,000	20,000	20,000
	D-638	N/mm ²	206.8	206.8	689	137.9	137.9	137.9	137.9	137.9	137.9
Tanaila Ohnara Ohl	D 000	psi	7,000	7,000		7,500	10,000	10,000	7,500	10,000	10,000
Tensile Stress, CW	D-638	N/mm ²	48.2	48.2		51.7	68.9	68.9	51.7	68.9	68.9
Tanaila Madulua 114/	D 020	10 ⁶ psi	2.5	2.6	6.0	1.8	1.8	1.8	1.8	1.8	1.8
Tensile Modulus, LW	D-638	KN/mm ²	17.2	17.9	41.3	12.4	12.4	12.4	12.4	12.4	12.4
Tanaila Madulua, CW	D 629	10 ⁶ psi	0.8	0.8		0.7	0.9	1.4	1.0	1.0	1.4
Tensile Modulus, Cw	D-038	KN/mm ²	5.5	5.5		4.8	6.2	9.6	6.9	6.9	9.6
Comprossive Stress IW	D 66/1	psi	30,000	30,000	60,000	24,000	24,000	24,000	24,000	24,000	24,000
Compressive Stress, Lw	D-0041	N/mm ²	206.8	206.8	413.6	165.4	165.4	165.4	165.4	165.4	165.4
Comprossive Stress CW	D 66/1	psi	15,000	16,000		15,500	16,500	20,000	16,500	17,500	20,000
compressive stress, Gw	D-0041	N/mm ²	103.4	110.3		106.8	113.7	137.9	113.79	120.6	137.9
Compressive Medulus, LW	D 66/1	10 ⁶ psi	2.5	2.6		1.8	1.8	1.8	1.8	1.8	1.8
Compressive wouldus, Lw	D-0041	KN/mm ²	17.2	17.9		12.4	12.4	12.4	12.4	12.4	12.4
Comprossive Medulue, CW	D 66/1	10 ⁶ psi	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
compressive modulus, Cw	D-0041	KN/mm ²	6.9	6.9		6.9	6.9	6.9	6.9	6.9	6.9
	D 700	psi	30,000	30,000	100,000	35,000	35,000	30,000	35,000	35,000	30,000
Flexural Stress, LW	D-790	N/mm ²	206.8	206.8	689	241.3	241.3	206.8	241.3	241.3	206.8
	D 700	psi	10,000	10,000		13,000	15,000	18,000	13,000	15,000	18,000
Flexural Stress, GW	D-790	N/mm ²	68.9	68.9		89.6	103.4	124.1	89.6	103.4	124.1
	D 700	10 ⁶ psi	1.8	2.2	6.0	1.8	2.0	2.0	1.8	2.0	2.0
Flexural Modulus, LW	D-790	KN/mm ²	11.0	11.0	41.9	12.4	13.8	13.8	12.4	13.8	13.8
Elovural Modulus, CW	D-790	10 ⁶ psi	0.8	0.8		0.9	1.1	1.4	1.0	1.1	1.4
Flexulat wouldus, GW		KN/mm ²	5.5	5.5		6.2	7.6	9.6	6.2	7.6	9.6
Moduluc of Electivity E	Full Section	10 ⁶ psi	2.6	2.8							
would of Eldsucity, E		KN/mm ²	17.9	19.3							
Modulus of Elasticity, E	Eull Soction	10 ⁶ psi	2.5	2.5							
(W & I Shapes > 4")	Tuli Section	KN/mm ²	17.2	17.2							
Shoar Madulus, LW	D 5270	10 ⁶ psi	0.425	0.425							
Silear Mouulus, LW	D-0319	KN/mm ²	2.9	2.9							
Short Ream Shear TW	D 2344	psi	4,500	4,500	8,000						
Short Dealli Shear, LW	D-2344	N/mm ²	31.0	31.0	55.2						
Rearing Stress IW & CW	D-953	psi	30,000	30,000		32,000	32,000	32,000	32,000	32,000	32,000
Dealing Suess, LW & GW	D-900	N/mm ²	206.8	206.8		220.6	220.6	220.6	220.6	220.6	220.6
Poisson's Ratio IW	D-3030	in./in.	0.33	0.33		0.31	0.31	0.31	0.31	0.31	0.31
r 01330113 Natio, LW	D-3033	mm/mm	0.33	0.33		0.31	0.31	0.31	0.31	0.31	0.31
Notched Izod Impact 1.W	D-256	ftIbs./in.	25	25	40	18.5	20	20	18.5	20	20
	0-200	J/mm	1.33	1.33	2.13	0.98	1.06	1.06	0.98	1.06	1.06
Notched Izod Impact CW	D-256	ftIbs./in.	4	4		5	5	5	5	5	5
Notched Izod Impact, CW	D-200	J/mm	0.2	0.2		0.26	0.26	0.26	0.26	0.26	0.26

	ASTM Test		Polvester	Vinvloctor	Rod & Bar PROForms	Polyester Flat Sheet			Vinylester Flat Sheet		
	Method	Units	PROForms	PROForms		1/8"	3/16" - 1/4"	3/8" - 1"	1/8"	3/16" - 1/4"	3/8" - 1"
PHYSICAL PROPERTIES											
Barcol Hardness	D-2583	-	45	45	50	40	40	40	40	40	40
24-Hour Water Absorption	D-570	% max., by wt.	0.60	0.60	0.25	0.60	0.60	0.60	0.60	0.60	0.60
Doncity	D 702	lbs./in.3	.062070	.062070	.072076	0.60-0.68	0.60-0.68	0.60-0.68	0.60-0.68	0.60-0.68	0.60-0.68
Density	D-192	10 ⁻³ g/mm ³	1.72-1.94	1.72-1.94	1.99-2.10	1.66-1.88	1.66-1.88	1.66-1.88	1.66-1.88	1.66-1.88	1.66-1.88
Coefficient of Thermal	D 606	10 ⁻⁶ in./in./°F	7.0	7.0	5.0	8.0	8.0	8.0	8.0	8.0	8.0
Expansion (Typical), LW	D-030	10 ⁻⁶ mm/mm/°C	12.6	12.6	5.45	14.5	14.5	14.5	14.5	14.5	14.5
Thermal Conductivity	0.177	BTU/sf/hr/°F/in.	4	4	4	4	4	4	4	4	4
mermal conductivity	0-177	W-m/m ² / °C	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
ELECTRICAL PROPERTIE	S (based on poly	ester and vinyleste	r resin systems)								
Arc Resistance, LW	D-495	seconds	120								
Dielectric Strength, LW	D-149	kv/in.	35								
Dielectric Strength, PF	D-149	volts/mil.	200								
Dielectric Strength, PF	D-150	@60hz	5								
FLAMMABILITY PROPER	TIES (based on	fire retardant polye	ster and fire reta	rdant vinylester re	sin systems)						
Flammability Classification (1/8")	UL 94	V-0									
Tunnel Test	E-84	25 max.									
NBS Smoke Chamber E-662	E-662	600-700									
Flammability	D-635	Self Extinguishing									

LW=Lengthwise CW=Crosswise PF=Perpendicular to Laminate Face

Typical Properties of Threaded Rod and Nuts

Our threaded rod and nuts are manufactured using premium vinylester resin containing UV inhibitors. The properties shown are the result of the ASTM test method indicated.

	ACTM Test		Value Diameter – Threads per inch (UNC)					
Properties	Method	Units	3/8" - 16	1/2" - 13	5/8" - 11	3/4" - 10	1" - 8	
Ultimate Transverse Shear	P 565	lb.	4,200	6,800	10,000	13,400	24,000	
(Double Shear)	0-000	Ν	18,683	30,248	44,482	59,606	106,757	
Longitudinal	D 605	psi	50,000	50,000	50,000	50,000	50,000	
Compressive Strength	092	МРа	345	345	345	345	345	
	D 700	psi	70,000	70,000	70,000	70,000	70,000	
Elayural Strangth	D-790	МРа	483	483	483	483	483	
า เองนาสา วินิยาเซ็นา	D-790	psi x 10 ⁶	2.5	2.5	2.5	2.5	2.5	
		GPa	17.2	17.2	17.2	17.2	17.2	
Flammability	D-635		Self-extinguishing					
Fire Retardant	E-84		Class 1					
Water Absorption (24 Hour Immersion)	D-570	% max.	0.8	0.8	0.8	0.8	0.8	
Longitudinal Coefficient of Thermal Expansion	D-696	10 ⁻⁶ in./in./°F	6	6	6	6	6	
		10 ⁻⁶ mm/mm/°C	11	11	11	11	11	
Ultimate Thread Shear (Using Fiberglass Nut)	_	lb.	1,200	2,400	3,600	4,000	8,200	
		Ν	5,338	10,676	16,014	17,793	36,475	
Ultimate Torque Strength		ftlb.	8	16	35	50	110	
with SAE 10W30 Motor Oil)		N-m	11	22	47	68	149	
Pod Waight		lb./ft.	0.09	0.15	0.24	0.34	0.52	
Kod Weight	—	g/m	40.82	68.03	108.86	154.22	235.86	
Nut Waisht		lb.	0.02	0.03	0.04	0.07	0.13	
NUT WEIGNT	-	grams	9.07	13.60	18.14	31.75	58.96	
Nut Dimensions		in.	0.75	0.875	1.25	1.5	1.75	
(Hex Nut Height)	_	mm	19.1	22.2	31.8	38.1	44.5	
Color			Gray					

Fabricating With FRP

PROForms[®] structural shapes are designed to provide superior mechanical properties and corrosion resistance. These products, combined with our PROGrid[®] and PROGrate[®] grating, are often used to fabricate structures such as stair/handrail assemblies, ladders, walkways and more. Our manufacturing facility includes a state-of-the-art fabrication facility, so we can cut, drill and assemble profiles to your specs or ship them ready to assemble in the field.

Fastening

There are many ways to fasten FRP to FRP or FRP to other materials, including riveted, screwed, and boltand-nut connections. Bolts and threaded holes are also possible (bonding in place is recommended), as well as lag screws when fastening profiles to wood.

Adhesives

Adhesives can also provide a very strong bond between two FRP shapes or between FRP and other structural materials. For best results, the mating surfaces must be properly prepared, and the recommended type of adhesive must be used. Adhesive should also be applied in a controlled environment, as air temperature and humidity can adversely affect the cure.

FRP Preparation

Almost all fabrication methods currently used for wood, aluminum and steel are available for the fabrication of our FRP building materials. PROForms products can be sawed, drilled, routed, punched and turned using standard metalworking equipment. Shearing is only recommended on material 3/16" or thinner. Diamond-coated or carbide saw blades and bits are recommended, as well as properly sharpened tools for faster speeds and less wear on tools.

Cutting Tips

When performing any cutting operation, use light, evenly applied pressure. Excessive pressure tends to clog the blade with dust particles, and this will shorten the life of the blade. Cutting speed is very important. Cutting too fast will fray the edge of the material and may cause it to turn black.

Visit **bedfordreinforced.com** and download the Fabrication Manual for more details on general fabrication guidelines.

EXPLORE OUR FULL LINE OF FRP SOLUTIONS

We offer a wide variety of structural products made of fiberglass-reinforced polymer, including PROForms° structural shapes, PROGrid° molded grating and PROGrate° pultruded grating. Our staff of skilled design, engineering and manufacturing professionals is dedicated to helping our customers maximize the benefits of FRP.

PRODUCTS

- Structural shapes
- Grating
- Decking
- Stairs and handrails
- Ladders and cages
- Fabricated structures

SERVICES

- Design and drafting
- Engineering
- Fabrication and CNC machining
- Secondary coating and painting
- Assembly and kitting
- In-house testing

1035 MISSION STREET, WINNIPEG, MANITOBA, R2J 0A4 PHONE: 204-233-0671 | FAX: 204-233-6938 | WEB: WWW.CARLSONCOMMERCIAL.CA

The photographs and/or drawings in this literature are for illustrative purposes only. While every reasonable effort has been made to ensure the accuracy of this data, we are not responsible for any errors or omissions contained on these pages. Please verify any information in question with a sales representative. We reserve the right to make changes in specifications without notice and without incurring obligation.